(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(a)) → c(n__f(n__g(n__f(n__a))))
f(X) → n__f(X)
g(X) → n__g(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(n__a) → a
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__f(X)) →+ f(activate(X))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X / n__f(X)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(a)) → c(n__f(n__g(n__f(n__a))))
f(X) → n__f(X)
g(X) → n__g(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(n__a) → a
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(5) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
c/0
(6) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(a)) → c
f(X) → n__f(X)
g(X) → n__g(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(n__a) → a
activate(X) → X
S is empty.
Rewrite Strategy: FULL
(7) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(8) Obligation:
TRS:
Rules:
f(f(a)) → c
f(X) → n__f(X)
g(X) → n__g(X)
a → n__a
activate(n__f(X)) → f(activate(X))
activate(n__g(X)) → g(activate(X))
activate(n__a) → a
activate(X) → X
Types:
f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
a :: c:n__f:n__g:n__a
c :: c:n__f:n__g:n__a
n__f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__a :: c:n__f:n__g:n__a
activate :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
hole_c:n__f:n__g:n__a1_0 :: c:n__f:n__g:n__a
gen_c:n__f:n__g:n__a2_0 :: Nat → c:n__f:n__g:n__a
(9) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
activate
(10) Obligation:
TRS:
Rules:
f(
f(
a)) →
cf(
X) →
n__f(
X)
g(
X) →
n__g(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__g(
X)) →
g(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
a :: c:n__f:n__g:n__a
c :: c:n__f:n__g:n__a
n__f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__a :: c:n__f:n__g:n__a
activate :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
hole_c:n__f:n__g:n__a1_0 :: c:n__f:n__g:n__a
gen_c:n__f:n__g:n__a2_0 :: Nat → c:n__f:n__g:n__a
Generator Equations:
gen_c:n__f:n__g:n__a2_0(0) ⇔ n__a
gen_c:n__f:n__g:n__a2_0(+(x, 1)) ⇔ n__f(gen_c:n__f:n__g:n__a2_0(x))
The following defined symbols remain to be analysed:
activate
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
activate(
gen_c:n__f:n__g:n__a2_0(
n4_0)) →
gen_c:n__f:n__g:n__a2_0(
n4_0), rt ∈ Ω(1 + n4
0)
Induction Base:
activate(gen_c:n__f:n__g:n__a2_0(0)) →RΩ(1)
gen_c:n__f:n__g:n__a2_0(0)
Induction Step:
activate(gen_c:n__f:n__g:n__a2_0(+(n4_0, 1))) →RΩ(1)
f(activate(gen_c:n__f:n__g:n__a2_0(n4_0))) →IH
f(gen_c:n__f:n__g:n__a2_0(c5_0)) →RΩ(1)
n__f(gen_c:n__f:n__g:n__a2_0(n4_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
f(
f(
a)) →
cf(
X) →
n__f(
X)
g(
X) →
n__g(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__g(
X)) →
g(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
a :: c:n__f:n__g:n__a
c :: c:n__f:n__g:n__a
n__f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__a :: c:n__f:n__g:n__a
activate :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
hole_c:n__f:n__g:n__a1_0 :: c:n__f:n__g:n__a
gen_c:n__f:n__g:n__a2_0 :: Nat → c:n__f:n__g:n__a
Lemmas:
activate(gen_c:n__f:n__g:n__a2_0(n4_0)) → gen_c:n__f:n__g:n__a2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_c:n__f:n__g:n__a2_0(0) ⇔ n__a
gen_c:n__f:n__g:n__a2_0(+(x, 1)) ⇔ n__f(gen_c:n__f:n__g:n__a2_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_c:n__f:n__g:n__a2_0(n4_0)) → gen_c:n__f:n__g:n__a2_0(n4_0), rt ∈ Ω(1 + n40)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
f(
a)) →
cf(
X) →
n__f(
X)
g(
X) →
n__g(
X)
a →
n__aactivate(
n__f(
X)) →
f(
activate(
X))
activate(
n__g(
X)) →
g(
activate(
X))
activate(
n__a) →
aactivate(
X) →
XTypes:
f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
a :: c:n__f:n__g:n__a
c :: c:n__f:n__g:n__a
n__f :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__g :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
n__a :: c:n__f:n__g:n__a
activate :: c:n__f:n__g:n__a → c:n__f:n__g:n__a
hole_c:n__f:n__g:n__a1_0 :: c:n__f:n__g:n__a
gen_c:n__f:n__g:n__a2_0 :: Nat → c:n__f:n__g:n__a
Lemmas:
activate(gen_c:n__f:n__g:n__a2_0(n4_0)) → gen_c:n__f:n__g:n__a2_0(n4_0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_c:n__f:n__g:n__a2_0(0) ⇔ n__a
gen_c:n__f:n__g:n__a2_0(+(x, 1)) ⇔ n__f(gen_c:n__f:n__g:n__a2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
activate(gen_c:n__f:n__g:n__a2_0(n4_0)) → gen_c:n__f:n__g:n__a2_0(n4_0), rt ∈ Ω(1 + n40)
(18) BOUNDS(n^1, INF)